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Abstract—In 1954, Gregorig formulated a theory for surface tension drained condensation on vertical
‘Auted” surfaces, which have a special convex fin profile. Typically, such fluted surfaces must also have a
drainage channel, in which the condensate generated on the special convex profile is drained by gravity
force. The literature has been devoid of a satisfactory model to predict the condensation rate in the drainage
channel. This paper formulates a theoretical method to predict the condensation rate in a drainage channel
of rectangular cross-section. The model was used to predict the experimental data of Kedzierski and Webb,
and is shown to provide an excellent prediction of the data. The prediction shows that the condensation
rate in the drainage channel accounted for 6-32% of the total condensation rate on the Gregorig convex
fin profile, as tested by Kedzierski and Webb. With slight modification, the drainage channel model may
be extended to predict the condensation rate in drainage channels having other than a rectangular shape,
e.g. a cosine shape.

1. INTRODUCTION

Tue ErfFecT of surface tension force on film con-
densation was first discovered by Gregorig {1]. When
condensation occurs on a vertical surface having con-
vex fins, and concave drainage channels, surface ten-
sion force will pull the condensate from the convex
profile (Fig. 1) into the concave drainage channels,
which are gravity drained. Presently, most analytical
models for prediction of the heat transfer rate typi-
cally ignore the condensation rate in the concave
drainage channels. Typical of such models are
Gregorig [1], Karkhu (2], Zener and Lavi [3], Webb
[4], Fujii and Honda {5], Mori et al. (6], Panchal and
Bell [7], and Adamek (8,9]. Zener and Lavi [3] and
Webb {4] defined the necessary width and depth of the
drainage channel, but they ignored the condensation
rate that occurs on the walls of the channel.

A closely related problem is that of condensation
on horizontal, integral fin tubes. Typically, these tubes
do not have the special profile shapes analyzed by
Gregorig [l] or Adamek [8). The integral fin tubes
usually have fins of a trapezoidal or rectangular cross-
sectional shape. However, Webb et al. [10] and Webb
and Rudy [11] have shown that surface tension drains
the fins. Webb and Rudy [11] and Honda and Nozu
[12] developed theoretical models for condensation
on such finned tubes. The Honda and Nozu model
included a procedure to predict the condensation rate

on the fin sides and in the base channel. The horizontal
integral fin tube analysis must also account for con-
densate retention between the fins, on the lower side
of the tube. This phenomenon is not involved in the
vertical finned plate problem.

This paper is concerned with the vertical finned
plates, and the condensation that occurs in the drain-
age channel. One may question the validity and com-
pleteness of theoretical models that ignore con-
densation in the drainge channel region. Hence, a key
objective of this work is to define the condensation
rate that actually occurs in the drainage channel.
Figure 2 shows how the drainage channel fills along
the condensing length. Figure 3 shows that the inter-
face in the drainage channel has a concave circular
shape. This will affect a surface tension force, which
acts to pull condensate into the concave drainage
channel. This action will establish the two additional
thin film regions illustrated by line segments 2-3 and
4-5in Fig. 1.

This study presents an analysis to calculate the con-
densation in the concave channel region. Unfor-
tunately, very little data exist to validate the predictive
model. However, the data of Kedzierski and Webb
[13] are directly applicable, and will be used here.
Much more data exist for condensation on horizontal,
integral fin tubes. Adamek and Webb [14] show how
the present analysis may be modified and applied to
the horizontal integral fin tube problem.
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EN

area of cross-section of drainage with

circular shape [m?]

hydraulic diameter, 44/P

spacing between adjacent fins [m]

fin height [m]

fraction factor

property group, 4kvAT/A (kg m s~ 3]

gravitational constant [m s~ 2]

condensation coefficient [W m~2 K]

height of lateral channel side [m]

thermal conductivity of condensate

Wm~'K~1]

I length between points x = i and k

L plate length [m]

condensate (flow) rate on region L,

[kgs~'m™]

M  drainage flow rate in z-direction [kg s~ ')

M, total condensate rate between points x = i
and k at the plate (0 <z < L) [kgs™']

Mi4x total condensation rate by the ‘index’
defined below [kg s~ ']

M, total condensate rate at plate [kg s~ ']

N number of fins

P wetted perimeter [m]

p  pressure difference compared to saturation

pressure [N m™7

total heat load at plate on region L, [W]

total heat load on area denoted by

‘index’ defined below [W]

R radius of curvature of interface in the
drainage area [m]

R* projected length of R to lateral fin wall {m)

r  local radius of film surface [m]

5 coordinate between /; and /, [m]

»m}ﬁa;q\,m oA

Qik
Qindex

NOMENCLATURE

AT temperature difference between film and wall [K]

u  film velocity in x-direction [m s~ ']

x  direction on fin surface from tip to base
(m]

w  film velocity in z-direction [m s~ ']

direction of drainage flow at plate [m].

(2]

Greek symbols
a  anglein Figs. 3 and 4 [rad]
B angle in Figs. 3 and 4 [rad]
o  film thickness [m)
d;  film thickness between points x = i and k&
[m]

A condensate film thickness in the channel

[m]
n dynamic viscosity of condensate
tkgs™'m~1]

n;  fin efficiency [dimensionless}

x  curvature of interface [m™']

¥ dr/ds [m~7

4 latent heat of vaporization of condensate
Wskg™']

kinematic viscosity of condensate [m? s~ ']
characteristic parameter of fluted fin shape
density of condensate [kg m™*]

surface tension of condensate [N m™']
wall shear stress [N m~?]

characteristic parameter of fluted fin
shape.

€ &A™ vw =

Indices
b  channel base
C  convex profile

Cha channel
s channel side wall
tot total.

2. FILM FLOW ON A VERTICAL
FINNED PLATE

Figure 1 shows the general characteristics of film
flow on a vertical finned plate having a drainage chan-
nel of rectangular cross-section. Figure 2 shows the
liquid-vapor interface shape of the film in the concave
drainage channel at several positions along the length
of the plate. Near the top of the plate (Fig. 2(a)), the
film is very thin, and has a nearly uniform thickness.
The radius of the interface increases along the plate
length, until the two segments of the film join to form
a smooth, circular interface, whose radius is approxi-
mately R = D/2, where D is the channel width (Fig.
2(d)). This will oceur if the plate is sufficiently long to
carry the amount of condensate needed for the
smooth, circular arc to form. The thickness of the
condensate at the base of the channel is A. The pres-
sure difference in the film between the inflection point
on the channel side wall and the center, base of the

channel is given by the Laplace equation as Ap = g/R.
For axial positions between Figs. 2(d) and (f), the
interface radius in the concave channel remains con-
stant, and the liquid depth in the channel increases.
At the axial position illustrated by Fig. 2(g), the radius
of the film has reached the fin tips, and the condensate
begins to spread at the top of the fins. Then, the
interface radius will be greater than D/2.

3. CONDENSATE FILM VELOCITY IN
THE DRAINAGE CHANNEL

Based on the average film velocity in the channel
w(z), the condensate mass flow rate is given by the
continuity equation as

M(2) = pw(2)A(2). ¢}

Gravity pulling downward is opposed by shear stress
on the channel wall. This force balance shows that
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FiG. 3. Cross-section of fin and drainage channel cross-section, with definition of condensate drainage
regions. Not to scale.

T, = bfpw’ = éppg (2
where A = R>—nR?*4 = 0.215R?, is the film cross-
sectional area, and P = 2R is the wall perimeter on
which the shear stress, t,,. acts.

Based on Thomas’s analysis [15], the friction factor
for laminar flow in a channel having a semi-circular
interface is 12/ Re. This may be written as

121
T Re  dyw’

S (3)
Substitution of equation (3) in equation (2), and solv-
ing for w, gives

gd

W= -—,

24v )

Substitution of equation (4) in equation (1), writing
A and P in terms of R, and using d}; = 0.43R gives
the mass flow rate in terms of the interface radius as

pg 0.43% x0.215

M() = >4

R ) = 0.0017’1‘—ng“(2).
)]

Equation (5) shows that the mass flow rate is related
to the fourth power of R. If the channel cross-sectional
shape is different than the rectangular one used here,
a different equation would result for equation (5).
However, the principles involved in the derivation of
the equation would remain the same.

v

4. CONDENSATION IN THE DRAINAGE
CHANNEL

4.1. Basis of the analytical model
At any axial position z on Fig. 1, the condensate
rate carried by the channel results from the condensate

formed on the convex profile, Mc. and in the channel,
Mch,- Thus

Mo (2) = Mc(2)+ Men (2). (6)
Figure 3 shows a cross-section of the film at axial
position =. This figure shows the condensate generated
per unit - length, /1, in the separate regions to be
modeled. The m,, is formed on the convex profile.
and is independent of z. Hence, at any point =, M, is
the sum of

Mo (2) = nity, 2+ J ity (8) + g3 (8) +msy (1)
o

+mes(yde (7)
where M(z) and Mc,.(z) in equation (6) correspond
to n1,y, . and the sum of the integrals in equation
(7), respectively. Equation (7) assumes that the con-
densation rate in the thick film region 34 in Fig. 3 is
negligible. The incremental length Ax for each region
in the equation (7) integral is illustrated as the /;
increments in Figs. 1 and 3. The integrated value over
0 < t < z for each of the integral terms in equation

(7) is symbolically written as
My(2) = j (8 dr. (8)

0

We will use the abbreviation M, = M, (L), where
L is the plate length. Our analysis will separately pre-
dict the condensation rates on the side and bottom of
the drainage channel. Using the above terminology,

the condensation on the side of the channel is

I

Moo=M,:=M,+M,;, = J P, (2)+1s,5(2) dz.
]

9)
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In the same manner, the condensation rate on the
bottom of the channel is

L
My = Mgy = Mos+Ms, = L gs(2) + 154 (2) dz.
(10)
Combining equations (6), (9) and (10), we get

My = Mc+ Moy, = Mc+Msy+Mpo. (1)

4.2, Condensation rate on the convex profile

The condensation rate on the convex profile, /y,,
depends on the shape of the convex profile. We will
assume that the profile of interest and the governing
theoretical equation have been separately specified.
For example, Adamek [8] has defined a ‘family’ of
convex profiles, whose condensation rate is given by

. kATY ( po €+ /4
o, = 2.15((7—) (7)0,((&3—)_5)[0‘) (12)

where the profile shape is governed by the parameters
¢ and w.

4.3. Calculation methodology for the drainage channel
For gravity drained film condensation, Nusselt
showed that « = k/d. The film thickness, 8, is given by
d(x) = (F,x/pg)"'*. 13)
For the present problem, it is assumed that surface
tension force dominates over gravity force. Hence, the
gravity force per unit volume in equation (13) may
be replaced by the surface tension induced pressure
gradient
dp/ds = ¢+ dk/ds = ¢+ d(1/r)/ds (14)
where r is the local radius of the condensate interface.
We will assume a linear pressure gradient in each of
the incremental length regions. Hence, for a gener-
alized region [,

dp/ds = ok, —x)/lx = ol(1/r) = (1/rl/lx (15)

where r;and r, are the local radii at the beginning and
end of the length /,, respectively. The length over
which equation (15) applies, /., will replace x in equa-
tion (13). Hence, equation (13) may be adapted to
calculate the condensation rate in each of the /,
regions of Fig. 3, if dx/ds and /; can be defined for
each of these regions.

4.4. Condensation on the side wall
4.4.1. Definition of two regions. The model must
account for condensation on regions /,, and /,; shown
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in Fig. 3. Figure 4 shows that the curvature is small
at x, and x,,, and that x(x,) = 1/R. Hence, the cur-
vature change between points x, and x, should be
quite small. Thus, the major curvature change occurs
between points x, and x;. So, the condensation rate
should be substantially higher on region [;; than on
region I,;. We shall derive an equation for the con-
densation rate on length /5, and then approximate
the condensation rate on length /,,, based on our
knowledge of that occurring on ;. Using the known
values of ry = R and r, ~ oo in equation (15) gives

(dp/ds]s = o/Ri>s. (16)

4.4.2. Condensation on l,,. It is now necessary to
determine /,;. The total length of the drainage channel
side wall, /, in Fig. 3 may be written as

an

where R* is the projection of R on the side wall. Note
that the length of the convex profile is not included in
the definition of H. Substitution of equation (5) in
equation (7) and solving for the radius of the con-
densate film at the channel, R(z), gives

R = (m (m 24 f t12(2)+ 13 ()

+mS4(Z)+m65(Z) dz)) B (18)

H= 1|2+123+R*+A

An approximate relation for R(z) may be estab-
lished by noting that the condensation rate on the
convex profile, /,,, should be substantially higher than
that in the drainage channel. Hence, we may simply
neglect the condensation rate in the drainage channel
for determination of R(z). This is a reasonable
approximation, since R(z) depends on the 1/4 power
of the condensation rate. For example, a 20% error
in the condensation rate will result in an error of R(2)
of only 4.6%. The resulting approximation for R(z)
is

v ) 1/4
R(Z)=(6.0m———7-p—-gm0|'.> . (19)

In the Appendix, we show that /,; and R* may be
expressed by equations (20) and (21)

113(2) > I54(2) = [F,R*(2)/0]"® (20)
I
R*() = R(z) cos <221;((z;) @)

Substituting equations (19) and (20) in the Nusselt
equation (equation (13)), along with use of equation
(16), the Appendix shows that

3vigaly RY L;R\ }'*
s =((2225) e (7))

(22)
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F1G. 4. Schematic showing change of curvature of the condensate film from the fin tip to the center of the
drainage channel.

Using equation (23), one calculates the condensation

rateon /,; as
_ Arf’n k
Ny = —
2

ds. (23)

o 623(5)
4.4.3. Condensation on I ,. We have previously
noted that the curvature and the curvature change
over [, should be quite small. A practical assumption
would be to neglect the condensation over /..
However, we will include this term using an approxi-
mation proposed by Honda [16]. Based on numerical
calculations, he showed that approximately

o (dk/ds),; ~ 0.16 (dk/ds),;.

The authors have found that changing the constant
0.1 in equation (23) from 0.1 to 1.0 causes only a 2%
change in the condensation rate on the total surface.
Following the same procedure used above, one finds
that

3vritg, 104, , R\Y? 104,,R\ \'*
é.z(s)=<<4‘m°'(I Sk ) +Fp( ; >s)

24

(25)
and
. AT [k
m,z=TJ; md)‘ (26)
where
113(2) = H—(l3(2) + R*(2) + A(2))- (27)

4.4.4. Commentary on the model. As previously
noted, the model assumes that gravity force is neg-
ligible, compared to the surface tension force. If this
is not satisfied, the actual flow field will be influenced
by gravity force; thus, the flow will have velocity

components in the x- and z-directions. Adamek {8] has
analyzed the influence of a combined surface tension—
gravity force field on flow of the condensate film. He
showed that the calculated film thickness in the x-
direction is nearly independent of the force in the z-
direction. This means that the real film velocity may
have a z-component, but the condensation rate is
nearly the same as that calculated neglecting the grav-
ity force. The approximation used here greatly sim-
plifies the analysis.

4.5. Condensation at the channel base surface

4.5.1. Specification of condensation regions. As
shown in Fig. 3, the width of the base channel, D/2,
is made up of three incremental lengths

D2 = R*(2)+1s4(2) +1s:02). (28)

The condensation rate on length R* is assumed to be
zero. As shown by Fig. 1, we assume that /s is drained
by gravity, rather than by surface tension. Itis possible
that surface tension also contributes to the drainage
of /s, although our model does not account for this
possibility. The analysis in the Appendix shows that
154 = I3, because of the symmetry of the circular inter-
face in the corner of the channel. Hence, /s, is given
by equation (20). Substitution of equation (20) in
equation (28) defines /45. A more precise formulation
for /5,4 is given in the Appendix.

4.5.2. Condensation on l5,. Calculation of the film
thickness in /5, parallels the procedure applied to /,;.
However, the analysis is simpler, because none of the
condensate generated in /g5 enters /.,. Assuming a
linear pressure gradient in /. and using equation
(15), we obtain

(29)
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Defining the coordinate s, with 0 < s < {5, and using
equation (29) in equation (13), we obtain for d,

I R 1/4
554(s)=(1?,, 5; s) )

The condensation rate on [, is obtained by integrating

equation (30)
AT (' k
=— ——ds.
A J; 8s4(8)

4.5.3. Condensation on [,s. The model assumes that
region /s is gravity drained. Hence, the Nusselt equa-
tion (equation (13)) directly applies. Applying equa-
tion (13) to /45 gives

(30)

3D

Mss

F t/4
06s5(2) = (’22) . (32)
P9
The resulting condensation rate on /4 is
. ATl K
rtgs(2) = =7 5= (33)
where /45 is obtained from
D
les(0) = 5 — R =154(). (34)

4.6. Iterative calculation procedure

Recall that the value of R(z) was initially estimated
assuming that all of the condensate was generated on
1,,. Having developed models for the condensation
rate in the channel, one may update the calculation for
R(2) using equation (18) with ms(z) = 0. mgs(z) = 0
because the model assumes that this condensate is
gravity drained, and does not enter the corner region.
The proposed iterative method is easily performed
using a digital computer program.

4.7. Integration over the plate length

The radius of the condensate film in the corner,
R(z), changes with length along the plate length. It is
zero at the top of the plate and attains its maximum
value at the bottom of the plate. Hence, the terms /,
and m, also are functions of z. The total condensation
rate on a plate of length L is given by equation (11).

The integration over z is easily accomplished using
an incremental computation procedure in a computer
program. The plate of length L is divided into N
increments of length Az over its length. Hence,
z;=j*Az, where j = 1,2,..., N. The values of R(z),
I,(z;)) and ry(z;) are used for calculations in the
(j+ Dth z-increment. The total condensation rate is
then given by

M =t L+ Z[’hIZ(Azj)+m23(Azj)+m$4(AZi)
+rmgs(Az)]  (35)

with 0 < j < N. Recall that M, is the condensation
rate on one-half of the fin channel, as shown in Fig.
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3. The total condensation rate on a plate having M fin
channels is given by

Mplale = ZNMxot- (36)

5. MODES OF CONDENSATION IN
THE CHANNEL

The condensate flow pattern in the channel changes
along the plate length, as is illustrated in Fig. 2. Thus,
the terms R(z) and /,(z) change along the plate length.
The cross-sectional area of the channel depends on
the channel height (H), the convex fin height (e —~ H)
and the channel width (D). For small channel heights
and channel spacings, some of the condensation areas
(/) may vanish. As long as R(z) < D/2, the con-
densate thickness in the channel base (A) is zero, and
H of Fig. 3 is equal to the sum of the components

H = R*(2)+1,3(2) +1,2(2). 37

However, when the radii (R) join at the center of the
channel, the condensate depth begins to increase, and
the analysis assumes that the condensation rate on the
channel base is negligible. After the radii are joined at
the channel center, the radius attains the value D/2
and remains constant until the entire fin depth and
channel depth (e) are flooded. When the condensate
depth is sufficient to start flooding the convex profile,
the radius may have R > D/2. Figure 2 illustrates this
when the entire channel and fin height are flooded. As
A increases from zero, the regions /,, and /,; will
decrease. When A > 0, H is given by

H = R*2)+1:(2)+11:(2)+A0G). (38)

It is necessary to define the correct equations to use
for the various flow patterns illustrated in Fig. 2. This
is done by defining ‘condensation modes’, which are
associated with particular flow patterns. Three modes
are defined for analysis of condensation on the side
wall.

Mode A
Mode A occurs near the upper part of the plate,
and exists when

H—(R*(2)+1,;(2)+A@) =2 0. 39)

The difference of the terms on the left-hand side of
equation (39) gives the length /,,. If equation (39) is
satisfied, the calculation procedure would use equa-
tions (9), (12) and (19) along with (20)-(27) to cal-
culate the condensation rate on the channel side.

Mode B

Mode B is initiated following Mode A and is dis-
tinguished by the condition /,,(z) = 0. Then, /,;(z) is
given by

13(2) = H=(R*(2)+A(2) (40)

rather than by equation (20), which applies to Mode
A,
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Mode C
This mode exists when the condensate thickness (A)
is so thick that both /|, and /,,(z) vanish. Con-
densation wiil occur only on the convex profile.
Modes D, E, and F describe conditions that affect
condensation on the channal base.

Mode D
This mode exists necar the upper part of the plate,
when both /() and /5,(z) exist. Mode D exists if
D
3 —(R*()+1a(2) 20 (41)

The lpnutb 1. (2} is given by the left-hand side of

tH3\~] 24 e lialy G S1GC O:

equation (41). The condensatxon rate on the channel
base is calculated using equations (10), (19) and (20),
along with equations (28)~(34).

Mode E
This mode is attained when /45(z) vanishes. Then
equation (20) is no longer applicable for calculation

ofl. (=) Rathar /! (- givan
Ul i548<). rataer 154\_} 15 given u_y

D
Lsa(2) = 5 — R*(2). (42)

Mode F

After both /() and /;,(z) have vanished, and
A > 0, the circular interfaces will have joined at the
channel center (Fig. 2(d)), and the interface radius
will have the value R = D/2. When this condition is
reached the condensation rate on the channel base is

6. COMPARISON OF THEORY WITH
EXPERIMENTAL RESULTS

Kedzierski and Webb {1 3] measured the R-11 con-

densation rate on vertxcal plates 100 mm long and
50 mm wide, which had precisely formed convex fin
profiles. The electrostatic machining method (EDM)
was used to form the fin profiles, which very precisely
forms the required geometry. Figure 5 shows the fin
geometry formed on the plates. The total fin height

consists of the convex fin profile (/,,), plus the channel
nfﬁpnth. H. Two convey nrnﬁlp geometries were made

(&) Qi QLOIVEA geoinerics weio mace,

whose shape is defined by equation (12). The first had
& = 2.0 (the Gregorig profile) and —0.5 (the Adamek
profile). Three finned plates were made for each &-
profile. They differed in the height of the drainage
channel, H, as shown by Fig. 5. All of the plates had
a drainage channe] width of D = 1.0 mm. The & = 2

plate had 30 fins and the { = —0.5 plate had 36 fins,
both with /,; = 0.762 mm. The objective of the tests

(5291841 e guect

was to determine if the experimental values for con-
densation on the convex profiles agreed with the
theoretical vaiues. Because the measured condensa-
tion rate includes that on both the convex profile (/y,)
and the drainage channel of depth H and width D,
it was necessary to determine the fraction of the

T. ApaMek and R. L. WeBs

Y P

ok b
UL 1ale willlil

total condensati
profile. This was done using a modified ‘W l son plot
method’, as described by Kedzierski and Webb [13].
This method separated the condensation rate on the
convex profile (Q,.), the sides of the channel (Q,) and
the channel base (Q,). Thus, the total condensation

rate is the sum of the components

Qlo( = Qc+Qs‘+Qb'

We have used the present theory to predict the
condensation rate, and then compare the predictions
with the Kedzierski and Webb [13] data. The solid
lines in Fig. 6(a) show the predicted heat transfer
coefficient for all of the data taken on plates shown in
Fig. 5. The dashed lines (a and g) show the predicted
condensation coefficient on the convex profile only
{excluding the channel). The data points are shown
by the symbols. This figure shows excellent agreement
between the present theory and the experimental
results.

Figure 6(b) shows the predicted results on the Fig.
5 plates for AT = 5 K. This figures shows the con-
tributions of the three terms in equation (43). The
symbol points in Fig. 6(b) show the experimental
values of @, for the plates. Lines a and ¢ show the
predicted values of Q,, for the { = —0.5 and 2.0
plates, respectively. Curves b and d of Fig. 6(b) show
the predicted values for the convex profiles (/,, in Fig.
5) for 100% fin efficiency. Thus the difference between
curves a and b is the condensation rate in the channel
region for the & = —0.5 surface. Similarly, the differ-
ence between curves ¢ and d is the condensation rate
in the channel region for the { = 2 geometry. Curve
e (at the bottom of Fig. 6(b)) shows the condensation
rate on the channel side (dimension H), and curve
f shows the condensation rate on the channel base
(dimension D).

The predicted values deviate from th imenta
values for the = —0.5 plates by 1, 2 and 0% for
plates having H of 0.254, 0.508 and 0.762 mm, respec-
tively. For the & = 2 plates, the predicted values devi-
ate from the experimental values by I, 1l and 5%
for plates having H of 0.254, 0.508 and 0.762 mm,
respectively. We conclude that the present theory does
an excellent job of predicting the experimental values.

Figure 7 shows the percentage of the total con-

densatlon ratein the channel (0. and QO,) forthe ¢ =

profile, as a function of the channel dimension H (see
Fig. 5). Predictions are given for R-11, which was used
by Kedzierski and Webb [13}, and for two other fluids
(R-12 and water). Figure 7 shows that the con-
densation rate on the channel side (Q,) decreases ra-
pidly as H is decreased from the highest value of 0.762
mm. Figure 8 shows the reason for this. Figure 8
shows how the terms R, /¢s and /5, change with the
drainage length, z. The value of R will increase along
the plate length uniil its maximum value is attained.
The maximum value of R is D/2, which is 0.5 mm
for all of the plates. The figure shows that R(z) > 0.25
mm after only 1/40th of the plate length. Therefore,

(43)

viate from the experimental
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FIG. 5. Cross-section illustrations of the ¢ = —0.5 and 2 profile plates tested by Kedzierski and Webb [13].

for the H=0.25 mm channels, Q, = 0 after only
z = 0.0025 m (1/40th of the plate length). For H = 0.5
mm, Fig. 8 shows that R(z) = 0.5 mm at z = 0.025
m. Hence, after z = 0.025 m no more condensation
occurs on the channel side for H = 0.5 mm. For
H = 0.762 mm, the condensate radius (R) reaches its
maximum value (0.5 mm) at z = 0.025 m, and does
not change thereafter. Thus, condensation occurs on
the side channel for the full length of the plate. The
A-mode governs the condensation on the channel side
for the H =0.762 profiles. However, the C-mode
governs the plates having H = 0.25 and 0.5 mm.
Ideally, one would choose a drainage channel
dimension H x D, such that R < H along the entire
plate length. Otherwise, the condensate film in the
drainage channel will begin to interfere with the con-
densation process on the convex profile (/,,). The ideal
drainage channel will allow attainment of /,; = 0 at
the end of the plate length. Conversely, there is little
advantage in making dimension H of the drainage

channel so high that it does not completely fill to

depth H. The authors plan to offer an additional pub-

lication on design of the optimum drainage channel.
The plates tested by Kedzierski and Webb [13] were

30000
Wm2g-
1= 20000t 0! 1
— Py 2 E =-C.3profile
! f
T 1000F {520
S 8000 i profile
5 r
2 b000F
2 L
= 4000 s
2 2 5 0 K
temperature difference at
F1G. 6(a). Predicted and measured condensing coefficients

on the Fig. 5 plates. (a) Line a: for { = —0.5 convex profile

only. (b) Lines al-a3: for ¢ = —0.5 profile and channel. (c)

Line g: for ¢ = 2 convex profile only. (d) Lines g4—g6: for
¢ = 2 profile and channel.
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FIiG. 6(b). Data and predictions for Kedzierski and Webb

(13} R-11 condensation dataat AT = 5 K on the Fig. 5 plates.

(a) Prediction of Q. for { = —0.5 plates. (b) Prediction of

Q. for the { = —0.5 fin profile. (c) Prediction of Q,, for the

¢ = 2 plates. (d) Prediction of @, for the ¢ = 2 fin profile. (e)
Prediction of Q. (f) Prediction of Q,.

made of copper, which has high thermal conductivity
{k =38 W m~' K~"). The above analysis and dis-
cussion assumed 100% fin efficiency. We have recal-
culated the results using the method developed by
Adamek and Webb [14] to account for the effect of
fin efficiency (). The & = 2 fins were quite thick (0.716
mm) and have a higher fin efficiency than the
&= —0.5 profiles (0.325 mm fin thickness). The
analysis showed that the fin efficiencies of the ¢ =2

T. Apamek and R. L. Wess
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FiG. 8. Graph showing the change of R* with distance (z)
from the top of the plate. =, denotes where [, = 0, z, denotes
where /5 = 0. R* = D/2for - > 2.5 mm.

and —0.5 plates were 0.98 and 0.94-0.96, respectively.
Hence, inclusion of fin efficiency effects would pro-
duce very small results for the Kedzierski and Webb
data.

The present model assumes laminar films in the
gravity drained region. If the plate is quite long, it is
possible that a turbulent film may exist in the gravity
drained region of the channel. However, one would
never expect a turbulent film in the surface tension
drained regions. If the gravity drained channel were
turbulent, the present analysis would tend to under-
predict the total condensation rate.

7. OTHER DRAINAGE CHANNEL SHAPES

The present analysis may be easily adapted to other
drainage channel shapes, ¢.g. the cosine shape illus-

R12
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4 |
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1
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F1G. 7. Prediction of Mcy,/M.(%) for three different fluids condensing on the finned plates of Fig. 5
€=2).
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Droinage
Candensgte

FiG. 9. Hllustration of a drainage channel having a cosine
cross-sectional shape.

trated in Fig. 9. The present analysis for the rect-
angular channel cross-section showed that less than
5% of the total condensation occurred on the channel
base. For the cosine shape, we would neglect the con-
densation rate in the base small region (/5, and /4s)
and include the contributions for /,, and /,,. Between
points 3 and 4 of Fig. 9, we propose to use the present
analysis for the flat side wall.

8. CONCLUSIONS

(1) A theoretical model has been developed to pre-
dict the condensation rate on the drainage channel of a
vertical plate (or tube) having surface tension drained
fins.

(2) Although the model was applied to channels of
rectangular cross-section, it may be easily adapted to
other drainage channel shapes.

(3) The theoretical model was shown to provide
excellent predictions of R-11 data by Kedzierski and
Webb [13].
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APPENDIX. CALCULATION OF /,,,
I, and R*

High heat transfer coefficients can exist in thin film regions
1,5 and /5, of Fig. 3. These thin film regions can occur near
the upper part of the plate if the channel dimensions 4 and
D are sufficiently large. Figure 3 shows that film regions /,;
and /s, exist at symmetric locations about the corner of the
drainge channel. The surface tension pressure gradient over
[, is given by equation (16). The same equation applies
to /54 (replace subscript ‘23’ by ‘54°). However, there is a
significant difference in the film flow rate at regions /,; and
l54. Section /,; is subjected to a strong mass flow m,,, which
enters the section at point 2, while the mass flow into the
section /4 is negligible. Asillustrated in Fig. 1, we will assume
that the condensate flow m; is governed by gravitation only,
and hence will not cross the boundary /.

Calculation of 1,

The film flow in region [y, is surface tension driven by the
change of the interface curvature from a linear to a circular
form (Figs. 3 and 4). Between points 3 and 4, the curvature
of the interface is — 1/R(z2), with radius R(z) depending on
the drainage flow rate. Since R(z) < s/2, the pressure at point
4, —6/R(2), is very low compared to the pressure at point 5,
which has zero curvature (r = o). Hence, a strong pressure
gradient exists over /s;, which pulls the condensate toward
the fin base. Our model assumes that the pressure gradient
over /s, is linear (Fig. 4). The rotation angle # traversed over
{5, is given by the integral of the curvature over /s,. This
integral is the area under the triangle for region /, of Fig. 4,
which assumes a linear curvature change. So, in mathe-
matical terms we may write

EL ]
laa= ZRJ‘ k(x) dx = 2Rp. (Al)
fxm= 4
Unfortunately, the magnitude of the angle 8 is not known,
although we expect it to be a small angle, e.g. 10-15>. We
will determine B by writing two independent equations for
the film thickness at point 4 of Fig. 3, each of which will
contain /;, and 8. Figure 3 shows that R* is the projection
of R onto the fin at point 4. Using the cosine relationship
and 65, = R—R*, we write §54/R = | ~cos §. Substituting
B = 95,/2R from equation (Al), we obtain

ds5s= R(1—cos B) = R(l —cos (;5—‘;))

To obtain the second equation, we will assume a linear

(A2)
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surface tension pressure gradient over /;,. The condensate
film thickness associated with this assumption is obtained
using the Nusselt equation (equation (13)) with equations
(14) and (15). Thus, we replace pg in equation (13) by //;,R
and z by /5. The film thickness at point 4 (x = /5,) is thus
given by

054 = [Fplng/o-]‘ *. (A3)

Equation (A3) assumes that no condensate flows from region
/5 into region /,. Substitution of equation (A2) in (A3) gives

Rl —cos ({54/2R)} = (F,RI3 /o). (Ad)

Although equation (A4) may be iteratively solved for /s,
sufficient accuracy will exist by expanding the cosine term
into a Taylor series, and using the first two terms of the
series. The resulting approximation for /,, is

Iy = [F,R¥/o)* . (AS)

Application of equation (A5) to practical condensation
problems yields reasonable results for . For example, con-
densation of R-11 at 1 atm in a channel having R = 0.4 mm
yields f = 10°.

Calculation of 1+ and d+,

Because of the symmetry of the drainage channel, the
simplest assumption is to set /5 = /;,. However, this approxi-
mation will slightly underpredict /»;. because it does not
account for the condensate entering at point 2. Recall that
no condensate entered point 5 for the calculation of /,. A
more precise estimate of /,, is obtained by accounting for the
condensate entering at point 2. The local film thickness in a
surface tension drained region is given by Adamek [8] as

o) = (Fp/a)('c')”‘}'r (k)" dx. (A6)
0

Equation (A6) is to be integrated over regions /;; and /;;,
which are bounded by x, < x < x;. The curvature gradient,

T. ApaMEK and R. L. Wess

#’, is constant over these regions, and is equal to f;./o and

/o forregions /|, and /- ;. respectively. Substitution of these

values in equation (A6) and writing the integral over the
two regions gives for d.:(x)

iy -1 4
da3(v) = l:fj(n(fx:v’fur4 + f (fiz/o)! df} (A7)
0

where + = v—x,. Solution of the momentum equation for
the average condensate velocity and use of the continuity
equation gives the mass flow rate

fitys = f12(8,2)*/3v (A8)
and at x = x,. conservation of mass requires
Jiatd2) = f13(0:0)" (A9)

Substitution of equations (A8) and (A9) in equation (A7),
along with /., = ¢/R{,,. gives the final result

023(x) = {(3vnitg, Rlysi0)*  + F,Rlsx/o]' . (A10)

The term #1,, is the condensate rate crossing point 2 in
Fig. 3. An iterative solution of equation (A10) is required
since it may not be explicitly solved for /,;, and because
Hlys = H1y, + i1~ is not known. Since we expect n7,, < ni,, a
reasonable approximation is to use n1y, = rity.

If the approximation /,; = /[, is used, the channel con-
densation rate (Mc,,) may be underpredicted by approxi-
mately 2%. which would result in significantly less than
1% error in M. Hence. the complication associated with
equation (A10) may not be warranted.

Calculation of R*
The relation between R and R* is obtained from Fig. 3.
Using the definition « = 7.4 — ff. we obtain

R*(z) = R(z):cos 2 = R(2) cos (n/4—2)

= R(z)-cos[1;(2)2R(2)). (ALl

PREDICTION DE LA CONDENSATION EN FILM SUR DES PLAQUES ET DES TUBES
AILETES: UN MODELE POUR LE CANAL DE DRAINAGE

Résumé—En 1954 Gregorig a formulé une théorie pour la condensation drainée par tension superficielle
sur des surfaces striées verticales. De telles surfaces peuvent avoir un canal de drainage dans lequel le
condensat formé sur un profil convexe spécial est drainé par gravité. On trouve des écrits qui veulent
formuler un modéle satisfaisant pour prédire la condensation dans le cana! de drainage. On formule ici une
méthode théorique pour prédire la condensation dans un canal de drainage a section droite rectangulaire. Le
modéle est utilisé pour décrire les expériences de Kedzierski et Webb, et on obtient une bonne prédiction
des données expérimentales. Le débit de condensat dans le canal de drainage compte pour 6 a 32% du
débit total obtenu avec le profil d’ailette convexe de Gregorig, comme vérifié par Kedzierski et Webb. Avec
une légére modification, le modéle peut étre étendu pour prédire le débit de condensat dans des canaux
ayant une forme autre que rectangulaire, par exemple une forme sinusoidale.

BERECHNUNG DER FILMKONDENSATION AN SENKRECHTEN BERIPPTEN
PLATTEN UND ROHREN—EIN MODELL FUR DEN ABFLUSSKANAL

Zusammenfassung—Im Jahre 1954 formulierte Gregorig eine Theorie fur die Kondensation an senkrechten,
speziell strukturierten Oberflichen mit konvexen Rippenprofilen. Von diesen Oberflichen flieBt das Kon-
densat infolge der Oberflichenspannung ab. Typischerweise miissen diese Oberflichen einen AbfluBkanal
besitzen, in dem das auf den speziellen konvexen Profilen gebildete Kondensat durch die Schwerkraft
abflieBt. In der Literatur befindet sich bisher kein befriedigendes Modell, das dic Berechnung der Kon-
densationsrate im AbfluBkaral erlaubt. In dieser Arbeit wird eine theoretische Methode erldutert, die die
Berechnung der Kondensationsrate in einem AbfluBkanal mit rechteckigem Querschnitt erlaubt. Das
Modell wird benutzt, um die experimentellen Daten von Kedzierski und Webb nachzurechnen, wobet sich
eine exzellente Ubereinstimmung zeigt. Die Berechnung ergibt. wie auch von Kedzierski und Webb
gemessen, daB die Kondensationsrate im AbfluBkanal 6-32% der gesamten Kondensationsrate an kon-
vexen Grigorig-Rippenprofilen betrigt. Das Modell fiir den AbfluBkanal kann mit leichten Modifikationen
zur Berechnung der Kondensationsrate in AbfluBkandlen anderen Querschnitts, z. B. sinusférmige
Querschnitte, ausgedehnt werden.
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TUJIEHOYHAA KOHOEHCALIMA HA BEPTHKAJIbHBIX OPEEPEHHBIX [UIACTUHAX H
TPYBAX: MOJEJb APEHAXHOI'O KAHAJIA

Amorases—B 1954 r. [peropar chopmyaupoBan TEOpHIO KOHICHCALMH C YMETOM TOBEPXHOCTHOrO
HATAXECHHS H CTOKA HA BEPTHKA/ILHALIX “ro()pPHPOBAHHBIX" MOBEPXHOCTAX C OCOOHM BHINYILIM Npodu-
nem pebep. Kax npaswio, Takue rodppupOBaHHBE NOBEPXHOCTH HMEIOT JDEHaXHbLI KaHAN, no KOTO-
pomy obpasylouiics Ha BHLITYKJIOM IPOQUIE KOHAEHCAT OTBOAMTCA MOZ ACHCTBHEM CHILI THXECTH.
Ho cux nop B nuTepaType OTCYTCTBOBANA YAOBJICTBOPHTENLHAA MOME/b IS ONPEACNCHUN CKOPOCTH
KOHICHCAIMA B APCHAXHOM kaHasje. B nanHo#M cTaThe chopMynuposas TeopeTuueckuiit MeToa pacuera
CKOPOCTH KOHACHCAUMH B NPEHAXHOM XaHAJIC MPAMOYTOJIBHOro cedeHus. C HCmonb3oBaHHeM NpeAno-
XCHHOH MoZJe/H NOMyueHb TEOPETHIECKH IKCEpHMEHTANbEbE NaHubte Kemepexoro u Be66a, n o6ua-
PYXCHO XOpolliee COrlacHe PaCYeTOB ¢ IKCICPUMEHTOM. PacueT nmokasa, YTo CKOPOCTh KOHINCHCALHH B
JApPEHAXHOM KaHajie cocTaBaser 6-32% ot obuielt ee ckopocTH Ha peGpax BHIYKIIOro npoduis, npesIo-
xcHHoro I'peropurom, uro Tamke noarsepwaeno Kemsepckum # Be66om. [Mocne neGonsumx momndu-
xammi  aHHas MOIENL [IPEHAXHOrO KAHANA MOXET NPHMEHATLCA [UIS ONPENENEHHA CKOPOCTH
KOHCHCAIIHN B KAHANAX NPyTOH, HANPHMEDP, KOCHHYCOHAAIBHOA GOpMBI.
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