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Abstract-In 1954, Gregorig formulated a theory for surface tension drained condensation on vertical 
‘fluted’ surfaces, which have a special convex fin profile. Typically, such fluted surfaces must also have a 
drainage channel, in which the condensate generated on the special convex protile is drained by gravity 
force. The literature has been devoid of a satisfactory model to predict the condensation rate in the drainage 
channel. This paper formulates a theoretical method to predict the condensation rate in a drainage channel 
of rectangular cross-section. The model was used to predict the experimental data of Kedzierski and Webb, 
and is shown to provide an excellent prediction of the data. The prediction shows that the condensation 
rate in the drainage channel accounted for 632% of the total condensation rate on the Gregorig convex 
fin profile, as tested by Kedzierski and Webb. With slight modification, the drainage channel model may 
be extended to predict the condensation rate in drainage channels having other than a rectangular shape, 

e.g. a cosine shape. 

1. INTRODUCTION 

THE EFFECT of surface tension force on film con- 
densation was first discovered by Gregorig [I]. When 
condensation occurs on a vertical surface having con- 
vex fins, and concave drainage channels, surface ten- 
sion force will pull the condensate from the convex 
profile (Fig. 1) into the concave drainage channels, 
which are gravity drained. Presently, most analytical 
models for prediction of the heat transfer rate typi- 
cally ignore the condensation rate in the concave 
drainage channels. Typical of such models are 
Gregorig [I], Karkhu [2], Zener and Lavi [3], Webb 
[4], Fujii and Honda [S], Mori et al. [6], Panchal and 
Bell [7], and Adamek [8,9]. Zener and Lavi [3] and 
Webb [4] defined the necessary width and depth of the 
drainage channel, but they ignored the condensation 
rate that occurs on the walls of the channel. 

A closely related problem is that of condensation 
on horizontal, integral fin tubes. Typically, these tubes 
do not have the special profile shapes analyzed by 
Gregorig [I] or Adamek [8]. The integral fin tubes 
usually have fins of a trapezoidal or rectangular cross- 
sectional shape. However, Webb et al. [lo] and Webb 
and Rudy (1 l] have shown that surface tension drains 
the fins. Webb and Rudy [l l] and Honda and Nozu 
[ 121 developed theoretical models for condensation 
on such finned tubes. The Honda and Nozu model 
included a procedure to predict the condensation rate 

on the fin sides and in the base channel. The horizontal 
integral fin tube analysis must also account for con- 
densate retention between the fins, on the lower side 
of the tube. This phenomenon is not involved in the 
vertical finned plate problem. 

This paper is concerned with the vertical finned 
plates, and the condensation that occurs in the drain- 
age channel. One may question the validity and com- 
pleteness of theoretical models that ignore con- 
densation in the drainge channel region. Hence, a key 
objective of this work is to define the condensation 
rate that actually occurs in the drainage channel. 
Figure 2 shows how the drainage channel fills along 
the condensing length. Figure 3 shows that the inter- 
face in the drainage channel has a concave circular 
shape. This will affect a surface tension force, which 
acts to pull condensate into the concave drainage 
channel. This action will establish the two additional 
thin film regions illustrated by line segments 2-3 and 
4-5 in Fig. 1. 

This study presents an analysis to calculate the con- 
densation in the concave channel region. Unfor- 
tunately, very little data exist to validate the predictive 
model. However, the data of Kedzierski and Webb 
1131 are directly applicable, and will be used here. 
Much more data exist for condensation on horizontal, 
integral fin tubes. Adamek and Webb [14] show how 
the present analysis may be modified and applied to 
the horizontal integral fin tube problem. 
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NOMENCLATURE 

A area of cross-section of drainage with u film velocity in x-direction [m s- ‘J 
circular shape [m*] x direction on fin surface from tip to base 

du hydraulic diameter, 4A/P [ml 
D spacing between adjacent fins [m] W film velocity in c-direction [m s- ‘J 

; 

fin height [m] f direction of drainage flow at plate [m]. 
fraction factor 

PP property group, 4kvAT/A [kg m s2] Greek symbols 
9 gravitational constant [m s-*1 angle in Figs. 3 and 4 [rad] 
h condensation coefficient JW m- * K- ‘1 ; angle in Figs. 3 and 4 [rad] 
H height of lateral channel side [m] 6 film thickness [m] 
k thermal conductivity of condensate 6,, film thickness between points .r = i and k 

[w m-’ K-‘J [ml 
I 
t” 

length between points x = i and k A condensate film thickness in the channel 
plate length [m] [ml 

~2,~ condensate (flow) rate on region & 9 dynamic viscosity of condensate 
[kg s- ’ m- ‘J [kg s-’ m-‘1 

I%? drainage flow rate in z-direction [kg s- ‘J llf fin efficiency [dimensionless] 
II?~~ total condensate rate between points x = I’ fc curvature of interface [m- ‘1 

and k at the plate (0 ( z < L) [kg s- ‘J I/ dK/ds [m-4 

hS”&X total condensation rate by the ‘index’ E. latent heat of vaporization of condensate 
defined below [kg s- ‘J [W s kg- ‘1 

&I,,, total condensate rate at plate [kg s- ‘1 V kinematic viscosity of condensate [m* s- ‘J 
N number of fins 5 characteristic parameter of fluted fin shape 
P wetted perimeter [m] P density of condensate [kg m- ‘1 

P pressure difference compared to saturation tT surface tension of condensate JN m- ‘1 
pressure [N m- 2] 5, wall shear stress [N me21 

& total heat load at plate on region L* [w] 0 characteristic parameter of fluted fin 

Qindcx total heat load on area denoted by shape. 
‘index’ defined below [WI 

R radius of curvature of interface in the Indices 
drainage area [m] b channel base 

R* projected length of R to lateral fin wall [m] C convex profile 
r local radius of film surface [m] Cha channel 
s coordinate between & and I, [m] S channel side wall 
AT temperaturedifference between film and wall [K] tot total. 

2. FILM FLOW ON A VERTICAL 

FINNED PLATE 

Figure 1 shows the general characteristics of film 
flow on a vertical finned plate having a drainage chan- 
nel of rectangular cross-section. Figure 2 shows the 
liquid-vapor interface shape of the film in the concave 
drainage channel at several positions along the length 
of the plate. Near the top of the plate (Fig. 2(a)), the 
film is very thin, and has a nearly uniform thickness. 
The radius of the interface increases along the plate 
length, until the two segments of the film join to form 
a smooth, circular interface, whose radius is approxi- 
mately R = D/2, where D is the channel width (Fig. 
2(d)). This will occur if the plate is sufficiently long to 
carry the amount of condensate needed for the 
smooth, circular arc to form. The thickness of the 
condensate at the base of the channel is A. The pres- 
sure difference in the film between the inflection point 
on the channel side wall and the center, base of the 

channel is given by the Laplace equation as Ap = o/R. 
For axial positions between Figs. 2(d) and (f), the 
interface radius in the concave channel remains con- 
stant, and the liquid depth in the channel increases. 
At the axial position illustrated by Fig. 2(g), the radius 
of the film has reached the fin tips, and the condensate 
begins to spread at the top of the fins. Then, the 
interface radius will be greater than D/2. 

3. CONDENSATE FILM VELOCITY IN 

THE DRAINAGE CHANNEL 

Based on the average film velocity in the channel 
w(z), the condensate mass flow rate is given by the 
continuity equation as 

lti(:) = pw(z)A(z). (1) 

Gravity pulling downward is opposed by shear stress 
on the channel wall. This force balance shows that 



Film condensation on vertical finned plates and tubes 
1739 

FIG. 1. Schematic of condensate flow on a vertical plate having surface tension drained fin profiles. 
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FIG. 2. Illustration showing how the radius in the drainage channel increases with plate length. 
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FIG. 3. Cross-section of fin and drainage channel cross-section. uith definition of condensate drainage 
regions. Not to scale. 

where A = R’-nR*/4 = 0.215R2, is the film cross- 
sectional area, and P = 2R is the wall perimeter on 
which the shear stress, TV, acts. 

Based on Thomas’s analysis [ 151, the friction factor 
for laminar flow in a channel having a semi-circular 
interface is 12/Re. This may be written as 

J.=‘2 12v 
=----. 

Re dHw 
(3) 

Substitution of equation (3) in equation (2), and solv- 
ing for \v, gives 

g&i 
w=24v. 

Substitution of equation (4) in equation (I), writing 
A and P in terms of R, and using dH = 0.43R gives 
the mass flow rate in terms of the interface radius as 

pg 0.432 x 0.215 
A(z) = u 

24 
R4(z) = 0.0017 ff R4(z). 

(5) 

Equation (5) shows that the mass flow rate is related 
to the fourth power of R. If the channel cross-sectional 
shape is different than the rectangular one used here, 
a different equation would result for equation (5). 
However, the principles involved in the derivation of 
the equation would remain the same. 

4. CONDENSATION IN THE DRAINAGE 

CHANNEL 

4.1. Basis of the analytical model 

At any axial position z on Fig. 1, the condensate 
rate carried by the channel results from the condensate 

formed on the convex profile, tic. and in the channel, 
I&,. Thus 

.Cf,“,(Z) = n;/,(z)+,ti,,,(5). 

Figure 3 shows a cross-section of the film at axial 
position :. This figure shows the condensate generated 
per unit I length, ti, in the separate regions to be 
modeled. The r&, is formed on the convex profile. 
and is independent of z. Hence, at any point :, I%?,,, is 
the sum of 

ti,“, (z) = Cl,,, ‘:+ I ~ri?,*(t)+Ijl*~(t)+lilj4(t) 0 

-+&(I) dt (7) 

where &,-(z) and tiChil(z) in equation (6) correspond 
to &, *z. and the sum of the integrals in equation 
(7), respectively. Equation (7) assumes that the con- 
densation rate in the thick film region 3-4 in Fig. 3 is 
negligible. The incremental length As for each region 
in the equation (7) integral is illustrated as the f,, 
increments in Figs. 1 and 3. The integrated value over 
0 < t < -_ for each of the integral terms in equation 
(7) is symbolically written as 

We will use the abbreviation A?,,: = .if,(L). where 
L is the plate length. Our analysis will separately pre- 
dict the condensation rates on the side and bottom of 
the drainage channel. Using the abo\-e terminology, 
the condensation on the side of the channel is 

. s 

1. 
MSld = M. = M,,fM?, = ri~,~(r)‘ti~;(z) dz. 

0 

(9) 
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In the same manner, the condensation rate on the 
bottom of the channel is 

I 

I. 
IV&,, = ni,, = IQ,, +Lt54 = ti&)+tis,(z) dz. 

0 

(10) 

Combining equations (6), (9) and (lo), we get 

ni,t = tic+lcict,, - &+&,+ni,. (11) 

4.2. Condensation rate on the convex profile 
The condensation rate on the convex profile, lo,, 

depends on the shape of the convex profile. We will 
assume that the profile of interest and the governing 
theoretical equation have been separately specified. 
For example, Adamek [8] has defined a ‘family’ of 
convex profiles, whose condensation rate is given by 

ho, = 2.15((~J(+($$)I,,)li4 (12) 

where the profile shape. is governed by the parameters 
5 and w. 

4.3. Calculation methodology for the drainage channel 
For gravity drained film condensation, Nusselt 

showed that a = k/6. The film thickness, 6, is given by 

6(x) = (FPx/pg)“4. (13) 

For the present problem, it is assumed that surface 
tension force dominates over gravity force. Hence, the 
gravity force per unit volume in equation (13) may 
be replaced by the surface tension induced pressure 
gradient 

dp/ds = a*dk/d.r = a*d(l/r)/ds (14) 

where r is the local radius of the condensate interface. 
We will assume a linear pressure gradient in each of 
the incremental length regions. Hence, for a gener- 
alized region lik 

where ri and r, are the local radii at the beginning and 
end of the length I*, respectively. The length over 
which equation (I 5) applies, lik, will replace x in equa- 
tion (13). Hence, equation (13) may be adapted to 
calculate the condensation rate in each of the 1, 
regions of Fig. 3, if dK/& and 1, can be defined for 
each of these regions. 

4.4. Condensation on the side wall 
4.4.1. Definition of two regions. The model must 

account for condensation on regions 1, Z and I,, shown 

in Fig. 3. Figure 4 shows that the curvature is small 
at x, and .x2,, and that K(x,) = l/R. Hence, the cur- 
vature change between points x, and x2 should be 
quite small. Thus, the major curvature change occurs 
between points x2 and x,. So, the condensation rate 
should be substantially higher on region 12, than on 
region 1, *. We shall derive an equation for the con- 
densation rate on length lZ1, and then approximate 
the condensation rate on length 1,2, based on our 
knowledge of that occurring on 12,. Using the known 
values of r, = R and r2 u w in equation (15) gives 

kW.6, = alR~z,. (16) 

4.4.2. Condensation on 12,. It is now necessary to 
determine 12,. The total length of the drainage channel 
side wall, H, in Fig. 3 may be written as 

H = l,2+12,+R*+A (17) 

where R* is the projection of R on the side wall. Note 
that the length of the convex profile is not included in 
the definition of H. Substitution of equation (5) in 
equation (7) and solving for the radius of the con- 
densate film at the channel, R(z), gives 

)) 
I4 

+tk54(z)+&,j(z) dz . (18) 

An approximate relation for R(z) may be estab- 
lished by noting that the condensation rate on the 
convex profile, lo,, should be substantially higher than 
that in the drainage channel. Hence, we may simply 
neglect the condensation rate in the drainage channel 
for determination of R(z). This is a reasonable 
approximation, since R(z) depends on the l/4 power 
of the condensation rate. For example, a 20% error 
in the condensation rate will result in an error of R(z) 
of only 4.6%. The resulting approximation for R(z) 
is 

R(z) = (1% 

In the Appendix, we show that 12, and R* may be 
expressed by equations (20) and (21) 

1,,(z) = ls4(z) = [FPRs(z)/a]“6 (20) 

(21) 

Substituting equations (19) and (20) in the Nusselt 
equation (equation (13)), along with use of equation 
(16), the Appendix shows that 
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dependcnr 
of film pmf,ic 

FIG. 4. Schematic showing change of curvature of the condensate film from the fin tip to the center of the 
drainage channel. 

Using equation (23), one calculates the condensation 
rate on II3 as 

4.43. Condensation on I,,. We have previously 
noted that the curvature and the curvature change 
over I, Z should be quite small. A practical assumption 
would be to neglect the condensation over f,2. 
However, we will include this term using an approxi- 
mation proposed by Honda [I 61. Based on numerical 
calculations, he showed that approximately 

a-(dK/ds),, 2: O.la*(dk/d&,. (24) 

The authors have found that changing the constant 
0.1 in equation (23) from 0.1 to 1 .O causes only a 2% 
change in the condensation rate on the total surface. 
Following the same procedure used above, one finds 
that 

and 

AT ‘11 k 

m’z =i. I- O d,z(s)ds 

where 

f,*(2) = H-(123(~)+R*(z)+A(:)). (27) 

44.4. Commentar): on the model. As previously 
noted, the model assumes that gravity force is neg- 
ligible, compared to the surface tension force. If this 
is not satisfied, the actual flow field will be influenced 
by gravity force; thus, the flow will have velocity 

components in the I- and z-directions. Adamek [S] has 
analyzed the influence of a combined surface tension- 
gravity force field on flow of the condensate film. He 
showed that the calculated film thickness in the .Y- 
direction is nearly independent of the force in the -_- 
direction. This means that the real film velocity ma) 
have a z-component, but the condensation rate is 
nearly the same as that calculated neglecting the grav- 
ity force. The approximation used here greatly sim- 
plifies the analysis. 

4.5. Condensation at the channel base surface 

4.5.1. Specification of condensation regions. As 
shown in Fig. 3, the width of the base channel, D/2. 
is made up of three incremental lengths 

02 = R*(~)+l,,(-_)+l,~(z). (28) 

The condensation rate on length R* is assumed to be 
zero. As shown by Fig. 1, we assume that /65 is drained 
by gravity, rather than by surface tension. It is possible 
that surface tension also contributes to the drainage 
of leSr although our model does not account for this 
possibility. The analysis in the Appendix shows that 
I,, z f2,. because of the symmetry of the circular inter- 
face in the comer of the channel. Hence, Is4 is given 
by equation (20). Substitution of equation (20) in 
equation (28) defines le5. A more precise formulation 
for I,, is given in the Appendix. 

4.5.2. Condensation on 15,. Calculation of the film 
thickness in I,, parallels the procedure applied to 12,. 
However, the analysis is simpler, because none of the 
condensate generated in I,, enters l!,. Assuming a 
linear pressure gradient in I,,. and using equation 
(I 5), we obtain 
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Defining the coordinate s, with 0 < s < IS4 and using 
equation (29) in equation (13), we obtain for 6,, 

The condensation rate on Is4 is obtained by integrating 
equation (30) 

(31) 

4.5.3. Condensation on lh5. The model assumes that 
region lsJ is gravity drained. Hence, the Nusselt equa- 
tion (equation (13)) directly applies. Applying equa- 
tion (13) to I,, gives 

/P \I/4 

665(.) = $z . 
t ) 

The resulting condensation rate on I,, is 

(33) 

where lh5 is obtained from 

L(z) 
D 

= 2 - R*(z)-f,,(z). (34) 

4.6. iterative calculation procedure 
Recall that the value of R(z) was initially estimated 

assuming that all of the condensate was generated on 
lo,. Having developed models for the condensation 
rate in the channel, one may update the calculation for 
R(z) using equation (18) with ti,,(z) = 0. k&z) = 0 
because the model assumes that this condensate is 
gravity drained, and does not enter the corner region. 
The proposed iterative method is easily performed 
using a digital computer program. 

4.7. integration over the plate length 
The radius of the condensate film in the corner, 

R(:), changes with length along the plate length. It is 
zero at the top of the plate and attains its maximum 
value at the bottom of the plate. Hence, the terms 1, 
and t& also are functions of z. The total condensation 
rate on a plate of length L is given by equation (11). 

The integration over z is easily accomplished using 
an incremental computation procedure in a computer 
program. The plate of length L is divided into N 
increments of length AZ over its length. Hence, 
z, = j* AZ, where j = 1,2,. . . , N. The values of R(z,), 
l,(zj) and &(zj) are used for calculations in the 
(j+ 1)th z-increment. The total condensation rate is 
then given by 

with 0 <j < N. Recall that ktO, is the condensation 
rate on one-half of the fin channel, as shown in Fig. 

3. The total condensation rate on a plate having N fin 
channels is given by 

I%$,., = 2Nh&, . (36) 

5. MODES OF CONDENSATION IN 

THE CHANNEL 

The condensate flow pattern in the channel changes 
along the plate length, as is illustrated in Fig. 2. Thus, 
the terms R(z) and f&z) change along the plate length. 
The cross-sectional area of the channel depends on 
the channel height (H), the convex fin height (e-H) 
and the channel width (D). For small channel heights 
and channel spacings, some of the condensation areas 
(I*) may vanish. As long as R(z) G D/2, the con- 
densate thickness in the channel base (A) is zero, and 
H of Fig. 3 is equal to the sum of the components 

H = R*(~)+f,~(z)+l,,(z). (37) 

However, when the radii (R) join at the center of the 
channel, the condensate depth begins to increase, and 
the analysis assumes that the condensation rate on the 
channel base is negligible. After the radii are joined at 
the channel center, the radius attains the value D/2 
and remains constant until the entire fin depth and 
channel depth (e) are flooded. When the condensate 
depth is sufficient to start flooding the’convex profile, 
the radius may have R B D/2. Figure 2 illustrates this 
when the entire channel and fin height are flooded. As 
A increases from zero, the regions 1,* and 12, will 
decrease. When A > 0, His given by 

H = R*(z)+,~,(z)+~,~(z)~-~(;). (38) 

It is necessary to define the correct equations to use 
for the various flow patterns illustrated in Fig. 2. This 
is done by defining ‘condensation modes’, which are 
associated with particular flow patterns. Three modes 
are defined for analysis of condensation on the side 
wall. 

Mode A 
Mode A occurs near the upper part of the plate, 

and exists when 

H- (R*(z) +123(z) + A(z)) > 0. (39) 

The difference of the terms on the left-hand side of 
equation (39) gives the length I,*. If equation (39) is 
satisfied, the calculation procedure would use equa- 
tions (9), (12) and (19) along with (20)-(27) to cal- 
culate the condensation rate on the channel side. 

Mode B 
Mode B is initiated following Mode A and is dis- 

tinguished by the condition I, &) = 0. Then, lZ3(z) is 
given by 

lz,(z) = H-(R*(z)+A(z)) (W 

rather than by equation (20), which applies to Mode 
A. 
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Modr C 
This mode exists when the condensate thickness (A) 

is so thick that both fiZ and f2,(=) vanish. Con- 
densation will occur only on the convex profile. 

Modes D, E, and F describe conditions that affect 
condensation on the channal base. 

total condensation rate which occurred on the convex 
profile. This w-as done using a modified ‘Wilson plot 
method’, as described by Kedzierski and Webb [ 131. 
This method separated the condensation rate on the 
convex profile (Q,), the sides of the channel (QJ and 

the channel base (Qi,). Thus, the total condensation 
rate is the sum of the components 

Mode D 
This mode exists near the upper part of the plate, Qmt = Qc+Qs+Qb. (43) 

when both 1&) and fS4(:) exist. Mode D exists if We have used the present theory to predict the 
condensation rate, and then compare the predictions 
with the Kedzierski and Webb [13] data. The solid 
lines in Fig. 6(a) show the predicted heat transfer 
coefficient for all of the data taken on plates shown in 
Fig. 5. The dashed lines (a and g) show the predicted 
condensation coefficient on the convex profile only 
(excluding the channel). The data points are shown 
by the symbols. This figure shows excellent agreement 
between the present theory and the experimental 
results. 

; - (R*e) + f,,(z)) 2 0. 

The length 1&z) is given by the left-hand side of 
equation (41). The condensation rate on the channel 
base is calculated using equations (I 0), (19) and (20) 
along with equations (28)-(34). 

Mode E 
This mode is attained when 165(r) vanishes. Then 

equation (20) is no longer applicable for calculation 
of Isa(z). Rather f&) is given by 

f,1(4 = ; -R*(I). 

Mode F 
After both fb5(z) and f,,(z) have vanished, and 

A > 0. the circular interfaces will have joined at the 
channel center (Fig. 2(d)), and the interface radius 
will have the value R = D/2. When this condition is 
reached the condensation rate on the channel base is 
negligible. 

6. COMPARISON OF THEORY WITH 

EXPERIMENTAL RESULTS 

Kedzierski and Webb [ 131 measured the R-l I con- 
densation rate on vertical plates 100 mm long and 
50 mm wide, which had precisely formed convex fin 
profiles. The electrostatic machining method (EDM) 
was used to form the fin profiles, which very precisely 
forms the required geometry. Figure 5 shows the fin 
geometry formed on the plates. The total fin height 
consists of the convex fin profile (I,,,), plus the channel 
of depth H. Two convex profile geometries were made, 
whose shape is defined by equation (12). The first had 
< = 2.0 (the Gregorig profile) and -0.5 (the Adamek 
profile). Three finned plates were made for each t- 
profile. They differed in the height of the drainage 
channel, H, as shown by Fig. 5. All of the plates had 
a drainage channel width of D = 1.0 mm. The t = 2 
plate had 30 fins and the < = -0.5 plate had 36 fins, 
both with f,,, = 0.762 mm. The objective of the tests 
was to determine if the experimental values for con- 
densation on the convex profiles agreed with the 
theoretical values. Because the measured condensa- 
tion rate includes that on both the convex profile (I, ,) 
and the drainage channel of depth H and width D, 
it was necessary to determine the fraction of the 

Figure 6(b) shows the predicted results on the Fig. 
5 plates for AT= 5 K. This figures shows the con- 
tributions of the three terms in equation (43). The 
symbol points in Fig. 6(b) show the experimental 
values of QlO, for the plates. Lines a and c show the 
predicted values of Qt,, for the 5 = -0.5 and 2.0 
plates. respectively. Curves b and d of Fig. 6(b) show 
the predicted values for the convex profiles (I,, , in Fig. 
5) for 100% fin etliciency. Thus the difference between 
curves a and b is the condensation rate in the channel 
region for the < = -0.5 surface. Similarly, the differ- 
ence between curves c and d is the condensation rate 
in the channel region for the 5 = 2 geometry. Curve 
e (at the bottom of Fig. 6(b)) shows the condensation 
rate on the channel side (dimension H), and curve 
f shows the condensation rate on the channel base 
(dimension DL 

The predicted values deviate from the experimental 
values for the < = -0.5 plates by 1, 2 and 0% for 
plates having H of 0.254,0.508 and 0.762 mm, respec- 
tively. For the 5 = 2 plates, the predicted values devi- 
ate from the experimental values by 1, 11 and 5% 
for plates having H of 0.254, 0.508 and 0.762 mm, 
respectively. We conclude that the present theory does 
an excellent job of predicting the experimental values. 

Figure 7 shows the percentage of the total con- 
densation rate in the channel (QS and Qb) for the 4 = 2 
profile, as a function of the channel dimension H (see 
Fig. 5). Predictions are given for R- 11, which was used 
by Kedzierski and Webb [ 131, and for two other fluids 
(R-12 and water). Figure 7 shows that the con- 
densation rate on the channel side (Q,) decreases ra- 
pidly as His decreased from the highest value of 0.762 
mm. Figure 8 shows the reason for this. Figure 8 
shows how the terms R, I,, and IS., change with the 
drainage length. Z. The value of R will increase along 
the plate length until its maximum value is attained. 
The maximum value of R is 012, which is 0.5 mm 
for all of the plates. The figure shows that R(z) > 0.25 
mm after only 1’40th of the plate length. Therefore. 
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FIG. 5. Cross-section illustrations of the 5 = -0.5 and 2 profile plates tested by Kedzierski and Webb [13]. 

for the H = 0.25 mm channels, QS = 0 after only 
: = 0.0025 m (1/40th of the plate length). For H = 0.5 
mm, Fig. 8 shows that R(z) = 0.5 mm at z = 0.025 
m. Hence, after z = 0.025 m no more condensation 
occurs on the channel side for H = 0.5 mm. For 
H = 0.762 mm, the condensate radius (R) reaches its 
maximum value (0.5 mm) at z = 0.025 m, and does 
not change thereafter. Thus, condensation occurs on 
the side channel for the full length of the plate. The 
A-mode governs the condensation on the channel side 
for the H = 0.762 profiles. However, the C-mode 
governs the plates having H = 0.25 and 0.5 mm. 

Ideally, one would choose a drainage channel 
dimension Hx D, such that R d H along the entire 
plate length. Otherwise, the condensate film in the 
drainage channel will begin to interfere with the con- 
densation process on the convex profile (I, J. The ideal 
drainage channel will allow attainment of lz3 = 0 at 
the end of the plate length. Conversely, there is little 
advantage in making dimension H of the drainage 

channel so high that it does not completely fill to 
depth H. The authors plan to offer an additional pub- 
lication on design of the optimum drainage channel. 

The plates tested by Kedzierski and Webb [ 131 were 

3ooilo 
W rn-*K-’ 

IC 20000 

% 

g 1Oil~ 
’ 
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8000 

5 6300 
-_ 

= born@ 2 
temperature difference si 

FIG. 6(a). Predicted and measured condensing coefficients 
on the Fig. 5 plates. (a) Line a: for < = -0.5 convex profile 
only. (b) Lines al-a3 : for < = -0.5 profile and channel. (c) 
Line g : for t = 2 convex profile only. (d) Lines &g6 : for 

5 = 2 profile and channel. 
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FIG. 6(b). Data and predictions for Kedzierski and Webb 
[I31 R-l I condensation data at AT = 5 K on the Fig. 5 plates. 
(a) Prediction of Q,“, for 5 = -0.5 plates. (b) Prediction of 
Qc for the 5 = -0.5 fin profile. (c) Prediction of QtL,f for the 
5 = 2 plates. (d) Prediction of Q, for the < = 2 fin profile. (e) 

Prediction of Qj. (f) Prediction of Qh. 

made of copper, which has high thermal conductivity 
(k = 356 W m- ’ K-l). The above analysis and dis- 
cussion assumed 100% fin efficiency. We have recal- 
culated the results using the method developed by 
Adamek and Webb [14] to account for the effect of 
fin efficiency (q,.). The c = 2 fins were quite thick (0.7 16 
mm) and have a higher fin efficiency than the 
< = -0.5 profiles (0.325 mm fin thickness). The 
analysis showed that the fin efficiencies of the 5 = 2 

2; 32 03 SL 05 mm 

Nxie II ,_- 

Mode E 
-- Z;- 

s- 

Mode F dromage flow 

dIrectIon 

the channel 

FIG. 8. Graph showing the change of R* with distance (z) 
from the top of the plate. I, denotes where lj, = 0, z2 denotes 

where laj = 0. R* = D/2 for z > 2.5 mm. 

and -0.5 plates were0.98 and 0.94-0.96, respectively. 
Hence, inclusion of fin efficiency effects would pro- 
duce very small results for the Kedzierski and Webb 
data. 

The present model assumes laminar films in the 
gravity drained region. If the plate is quite long, it is 
possible that a turbulent film may exist in the gravity 
drained region of the channel. However, one would 
never expect a turbulent film in the surface tension 
drained regions. If the gravity drained channel were 
turbulent, the present analysis would tend to under- 
predict the total condensation rate. 

7. OTHER DRAINAGE CHANNEL SHAPES 

The present analysis may be easily adapted to other 
drainage channel shapes, e.g. the cosine shape illus- 

FIG. 7. Prediction of &fc,,/iii,,(%) for three different fluids condensing on the finned plates of Fig. 5 
(5 = 2). 
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FIG. 9. Illustration of a drainage channel having a cosine 
cross-sectional shape. 

trated in Fig. 9. The present analysis for the rect- 
angular channel cross-section showed that less than 
5% of the total condensation occurred on the channel 
base. For the cosine shape, we would neglect the con- 
densation rate in the base small region (lS4 and Ih5) 
and include the contributions for I, 2 and I*,. Between 
points 3 and 4 of Fig. 9, we propose to use the present 
analysis for the flat side wall. 

8. CONCLUSIONS 

(1) A theoretical model has been developed to pre- 
dici the condensation rate on the drainage channelbf a 
vertical plate (or tube) having surface tension drained 
fins. 

(2) Although the model was applied to channels of 
rectangular cross-section, it may be easily adapted to 
other drainage channel shapes. 

(3) The theoretical model was shown to provide 
excellent predictions of R-l 1 data by Kedzierski and 
Webb [ 131. 
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APPENDIX. CALCULATION OF lzJ, 
/, and R’ 

High heat transfer coefficients can exist in thin film regions 
12, and Is4 of Fig. 3. These thin film regions can occur near 
the upper part of the plate if the channel dimensions Hand 
D are sufficiently large. Figure 3 shows that film regions I*3 
and I,, exist at symmetric locations about the comer of the 
drainge channel. The surface tension pressure gradient over 
i2, is given by equation (16). The same equation applies 
to ls4 (replace subscript ‘23’ by ‘54’). However, there is a 
significant difference in the film flow rate at regions iz3 and 
Is+ Section !I, is subjected to a strong mass flow nz,?, which 
enters the section at point 2, while the mass flow into the 
section f,,is negligible. As illustrated in Fig, 1, we will assume 
that the condensate flow m 65 is governed by gravitation only, 
and hence will not cross the boundary 1*+ 

Calculation of I,, 
The film flow in region lj4 is surface tension driven by the 

change of the interface curvature from a linear to a circular 
form (Figs. 3 and 4). Between points 3 and 4, the curvature 
of the interface is -t/R(z), wjth radius R(r) depending on 
the drainage flow rate. Since R(r) S s/2, the pressure at point 
4. -a/R(r), is very low compared to the pressure at point 5, 
which has zero curvature (r = co). Hence, a strong pressure 
gradient exists over IS4, which pulls the condensate toward 
the fin base. Our model assumes that the pressure gradient 
over I,, is linear (Fig. 4). The rotation angle fi traversed over 
f5, is given by the integral of the curvature over I,,. This 
integral is the area under the triangle for region I,, of Fig. 4, 
which assumes a linear curvature change. So, in mathe- 
matical terms we may write 

[s4 = 2R K(X) dx = 2RB. (Al) 

Unfortunately, the magnitude of the angle /I is not known, 
although we expect it to be a small angle, e.g. 10-15’. We 
will determine j? by writing two independent equations for 
the film thickness at point 4 of Fig. 3, each of which will 
contain 15d and 8. Figure 3 shows that R* is the projection 
of R onto the fin at point 4. Using the cosine relationship 
and 6 54 = R-R*. we write S,JR = I -cos j?. Substituting 
/I = 6,,/2R from equation (Al), we obtain 

b ,r=R(l-cosp)=R(t-cos()). (AZ) 

To obtain the second equation, we will assume a linear 
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surface tension pressure gradient over lj,. The condensate 
film thickness associated with this assumption is obtained 
using the Nusselt equation (equation (13)) with equations 
(14) and (15). Thus, we replace pg in equation (13) by a/I,,R 
and z by iI,. The film thickness at point 4 (X = I,,) is thus 
given by 

a,, = [F&:,R/(r] ’ ‘. (A3) 

Equation (A3) assumes that no condensate flows from region 
lj, into region I,,. Substitution ofequation (A2) in (A3) gives 

R[I -cos (1,,/2R)] = (F,R/j,/a). (AJ) 

Although equation (A4) may be iteratively solved for Is,. 
sufficient accuracy will exist by expanding the cosine term 
into a Taylor series, and using the first two terms of the 
series. The resulting approximation for I,, is 

lj, = [F,R’/a]’ 6. (A5) 

Application of equation (AS) to practical condensation 
problems yields reasonable results for /I. For example. con- 
densation of R-l I at 1 atm in a channel having R = 0.4 mm 
yields b = IO’. 

Because of the symmetry of the drainage channel, the 
simplest assumption is to set I 23 = I,,. However. thisapproxi- 
mation will slightly underpredict I:,. because it does not 
account for the condensate entering at point 2. Recall that 
no condensate entered point 5 for the calculation of I,,. A 
more precise estimate of !?,, is obtained by accounting for the 
condensate entering at pomt 2. The local film thickness in a 
surface tension drained region is given by Adamek [8] as 

61(X) = (F&@/-4.’ 
s 

’ (ti’)’ ’ ds. (A6) 
0 

Equation (A6) is to be integrated over regions I, z and I,,, 
which are bounded by X, < .r < x,. The curvature gradient. 

ti’. is constant over these regions. and is equal tof,,a and 
.f:,,a for regions/,, and I,,. respectively. Substitution of these 
values in equation (A6) and writing the integral over the 
two regions gives for d,,(.v) 

61,(.y_) = [&,,(/&j)-’ ‘C g,,,;u)-’ dij -’ ’ (A7) 

where f = .v--9,. Solution of the momentum equation for 
the average condensate velocity and use of the continuity 
equation gives the mass Row rate 

til ,: =“f,2(6,1)JJ3\~ L48) 

and at .v = _Y,. conservation of mass requires 

/‘,2(6,,)’ =/-*s(621)2. (A9) 

Substitution of equations (A8) and (A9) in equation (A7). 
along with.f,, = u/RI,,. gives the final result 

8:;(.\-) = [(3vtir,,,RI,, 0)’ ‘+F,,Rll,s’cr]’ ‘. (AlO) 

The term ,)iO- is the condensate rate crossing point 2 in 
Fig. 3. An iterative solution of equation (AIO) is required 
since it may not be explicitly solved for IL1. and because 
u~~,~ = Mu, +rtr,, is not known. Since we expect A,? << tir,,, a 
reasonable approximation is to use tit,,: 4 rir,,. 

lf the approximation I,> = lj, is used, the channel con- 
densation rate (:tifc.:I,,,) may be underpredicted by approxi- 
mately 2%. which would result in significantly less than 
I % error in .ri,,,,. Hence. the complication associated with 
equation (AIO) may not be warranted. 

Ctrlcdarion of’ R * 
The relation between R and R* is obtained from Fig. 3. 

Using the definition 2 = n 4-b. we obtain 

R*(I) = R(s).cos x = R(:).cos(n/?-z) 

= R(-_).cos [113(z):2R(z)]. (Al 1) 

PREDICTION DE LA CONDENSATION EN FILM SUR DES PLAQUES ET DES TUBES 
AILETES: UN MODELE POUR LE CANAL DE DRAINAGE 

R&m&-En 1954 Gregorig a formule une thiorie pour la condensation drainee par tension superficielle 
sur des surfaces striees verticales. De telles surfaces peuvent avoir un canal de drainage dans lequel le 
condensat forme sur un profil convexe special est drain& par gravite. On trouve des &its qui veulent 
formuler un modele satisfaisant pour p&dire la condensation dans le cana! de drainage. On formule ici une 
mtthode theorique pour predire la condensation dans un canal de drainage a section droite rectangulaire. Le 
modtle est utilist pour d&ire les experiences de Kedzierski et Webb, et on obtient une bonne prediction 
des don&es experimentales. Le debit de condensat dans le canal de drainage compte pour 6 a 32% du 
debit total obtenu avec le prolil d’ailette convexe de Gregorig, comme verifie par Kedzierski et Webb. Avec 
une leg&e modification, le modtle peut etre btendu pour predire le debit de condensat dans des canaux 

ayant une forme autre que rectangulaire, par exemple une forme sinusoidale. 

BERECHNUNG DER FILMKONDENSATION AN SENKRECHTEN BERIPPTEN 
PLATTEN UND ROHREN-EIN MODELL FtiR DEN ABFLUSSKANAL 

Zusammenfassuog-Im Jahre 1954 formulierte GregorigeineTheorie fur die Kondensation an senkrechten, 
speziell strukturierten Oberflgchen mit konvexen Rippenprotilen. Von diesen Oberfllchen BieBt das Kon- 
densat infolge der Oberthichenspannung ab. Typischerweise miissen diese ObertIachen einen AbfluBkanal 
besitzen, in dem das auf den speziellen konvexen Profilen gebildete Kondensat durch die Schwerkraft 
abflieBt. In der Literatur befindet sich bisher kein befriedigendes Modell, das die Berechnung der Kon- 
densationsrate im AbfluBkanal erlaubt. In dieser Arbeit wird eine theoretische Methode erllutert. die die 
Berechnung der Kondensationsrate in einem Abflullkanal mit rechteckigem Querschnitt erlaubt. Das 
Model1 wird benutzt, urn die experimentellen Daten von Kedzierski und Webb nachzurechnen, wobei sich 
eine exzellente Ubereinstimmung zeigt. Die Berechnung ergibt. wie such van Kedzierski und Webb 
gemessen, daB die Kondensationsrate im AbfluBkanal 632% der gesamten Kondensationsrate an kon- 
vexen Grigorig-Rippenprofilen betrigt. Das Model1 fur den AbfluBkanal kann mit leichten Modifikationen 
zur Berechnung der Kondensationsrate in AbfluBkanllen anderen Querschnitts. z. B. sinusfiirmige 

Querschnitte, ausgedehnt werden. 
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l-lJlEHOPHM KOHflEHCAUWl HA BEPTMKAJ’lbHbIX OPE6PEHHbIX l-lJIACTHHAX H 
TPYEAX: MOAEJIb APEHAIKHOI’O KAHAJIA 

W-B 1954 r. rperop~r @O~~~JIQWWJI reopmo LOHJICHC~WH c yvnom nonepx~~~nioro 

HaTueHlrnacroraHasc~~rea'r~p~posalmba"nosepxxocrnxcoco6~abl~nbl~u~u- 

neM pe6ep Kar aPa~nno. rarue ro+pnpo we noeepxHocrH HbUlOTn~Ha~ raHaJ& no KOTO- 

pOMy 06pa3yloUUliiCS Ha BbWyKJlOM UpO+JlC KOWeHCaT OTBOLWICR UOAllekTBHeM CHJlbl TnXWXii. 

plo CHX nop B JlnTepaType 0Tq-rCrBOma ynoanrreoplrrenbnaa MOlleJlb Mll 0npcneJleHHll CCOpocM 
xoHLlCHCaLUUI B ROM LaHane. Bnaa~ol naTac~pMynrrpoBrut TeopeTHq~rrrA~nonpafneTa 
cropa?l~o~~~Us~~YHOM~enpaMo~ollbHoro~eH~ C HCIIOnb3OBaHHeMUpeLm- 
xeHeoi3 ~onemrnonyge~bl Teo~necmsccnepHMemanb~enaHH~e Kensepcxoro~ Be66a.~ o6xa- 
pyxetro xopource cornacllepac¶croBc3KcncpwtemoM. Pacve~noraw~,rro CxopOCTbro~eHCauHHB 

npeHaMoM KaHanecocramieT 6-32% o~o6~eleecropocr~ Hap&pax Bbmyrnoroqmjmnn,npcaTo- 

xeifHOr0 Ij3eropHrou,~0TacicenomBepwieHo KemepCrHM H Be660~. llocne H~~~JT~u~HxM~~IE@~- 

rawd naHHan bsonenb npeHaxHor0 xaHana btoxeT npxMetwrbcn arm onpenenetwn cropocr~ 


